中文版 | English
成员
Staff
联系我们
Contact Us
地址:北京市海淀区中关村南大街5号北京理工大学信息与电子学院
电话:010-68918267
传真:010-68918267
当前位置:首页 > 老师 > 潘小敏
老师
当前位置:首页 > 老师 > 潘小敏

潘小敏

来源:本站原创 发布时间: 浏览量:

潘小敏

姓名:潘小敏
职称:长聘副教授,特别研究员,博士生导师
专业:电磁场与微波技术
研究方向:高性能仿真技术与机器学习,电磁环境,微波遥感,集成电路电磁兼容性及多物理场分析等。
办公电话:010-68911286
分别于2000和2003年在武汉大学电子与信息学学院获得学士和硕士学位,2006在中国科学院电子学研究所获得博士学位。2006年入职北京理工大学。主持了近20项课题,包括3项国家自然科学基金和2项973子课题。作为骨干参与了包括国家重点研发计划和总装预研在内的10余项国家级课题。

n

2012年度教育部“新世纪优秀人才资助计划”入选者

n

2012年度北京市“优秀人才培养资助计划”入选者

n

2009年度北京科学技术奖一等奖第3完成人

 

软件

[1]

中算电磁仿真软件,登记号:2007SR07036,第二完成人

 

专利

[1]

多极子数据库的电磁环境预测系统,专利号:ZL2008101271912,2010年9月,第二完成人


论文:

[1]

K. J. Xu, W. Song. X. M. Pan, and X. Q. Sheng, “Accurate and Efficient Singularity Treatment in Integral Equation Discontinuous Galerkin Method,” IEEE Transactions on Antennas and Propagation, Accepted, doi: 10.1109/TAP.2018.2817287

[2]

X. M. Pan, S. L. Huang, and X. Q. Sheng, “Wide Angular Sweeping of Dynamic Electromagnetic Responses From Large Targets by MPI Parallel Skeletonization,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp. 1619-1623, Mar.,2018

[3]

Y. N. Liu, X. M. Pan, and X. Q. Sheng, “Skeletonization Accelerated MLFMA Solution of Volume Integral Equation for Plasmonic Structures,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp.1590-1594, Mar., 2018.

[4]

K. J. Xu, X. M. Pan, R. X. Li, and X. Q. Sheng, “Fast and Accurate Algorithm for Repeated Optical Trapping Simulations on Arbitrarily Shaped Particles Based on Boundary Element Method,” J. Quant. Spectrosc. Radiat. Transfer, vol. 195, pp. 76-84, Jul., 2017.

[5]

D. M. Yu, Y. N. Liu, F. L. Tian, X. M. Pan, X. Q. Sheng, "Accurate thermoplasmonic simulation of metallic nanoparticles",Journal of Quantitative Spectroscopy Radiative Transfer, vol.187,  pp. 150–160 ,January 2017

[6] X. M. Pan, K. J. Xu, M. L. Yang, et al., "Prediction of metallic nano-optical trapping forces by finite element-boundary integral method," Opt. Express, vol. 23, pp. 6130-6144, 2015. 
[7] X. M. Pan and X. Q. Sheng, "Fast Solution of Linear Systems With Many Right Hand Sides Based on Skeletonization," IEEE Antennas Wireless Propag. Lett., vol. 99, pp. 1-4, 2015.
[8] X. M. Pan and X. Q. Sheng, "Accurate and Efficient Evaluation of Spatial Electromagnetic Responses of Large Scale Targets," IEEE Trans. Antennas Propag., vol. 62, pp. 4746-4753, 2014.
[9]

X. M. Pan and X. Q. Sheng, "Efficient Wide-Band Evaluation of Electromagnetic Wave Scattering From Complex Targets," IEEE Trans. Antennas Propag., vol. 62, pp. 4304-4313, Aug. 2014.

[10] X. M. Pan, M. J. Gou, and X. Q. Sheng, "Prediction of radiation pressure force exerted on moving particles by the two-level skeletonization," Opt. Express, vol. 22, pp. 10032-10045, 2014/04/21 2014.
[11]

X. M. Pan, and X. Q. Sheng, “Improved Algebraic Preconditioning for MoM Solutions of Large-Scale Electromagnetic Problems,” IEEE Antennas and Wireless Propag. Lett. , vol. 13, pp. 106-109, Jan., 2014. 

[12]

X. M. Pan and X. Q. Sheng, "Sparse Approximate Inverse Preconditioner for Multiscale Dynamic Electromagnetic Problems," Radio Sci., vol. 49, pp. 1041-1051, Nov. 2014.

[13]

H. W. Gao, J. W. Hao, X. M. Pan, et al., "Application of Interpolative Decomposition to FE-BI-MLFMA for Fast Computation of Monostatic Scattering from 3-D Complex Composite Objects," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1490-1493, 2014.

[14] X. M. Pan, and X. Q. Sheng, “Preconditioning Technique in the Interpolative Decomposition Multilevel Fast Multipole Algorithm,” IEEE Trans. Antennas Propag., Vol.61, No.6, pp.3373-3377, June, 2013.
[15] X. M. Pan, and X. Q. Sheng, “Hierarchical Interpolative Decomposition Multilevel Fast Multipole Algorithm For Dynamic Electromagnetic Simulations,” Progr. In Electromagnetics Research-PIER, vol. 134, pp. 79-94, 2013.
[16] X. M. Pan, W.C. Pi, M.L. Yang, Z. Peng, and X.Q. Sheng, “Solving Problems with over One Billion Unknowns by the MLFMA,” IEEE Trans. Antennas Propag., Vol.60, No.5, pp.2571-2574, May, 2012.
[17] X. M. Pan, J.G. Wei, Z. Peng, and X.Q. Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Sci., vol. 47, RS1011, 2012.
[18] X. M. Pan, L. Cai, and X.Q. Sheng, “An Efficient High Order Multilevel Fast Multipole Algorithm for Electromagnetic Scattering Analysis,” Progress In Electromagnetics Research-PIER, Vol.126, 85-100, 2012.
[19] Ming-Lin Yang, Xin-Qing Sheng, X. M. Pan, and Wei-Chao Pi, “A Concave FE-BI-MLFMA for Scattering by a Large Body With Nonuniform Deep Cavities”, IEEE Trans. on Magnetics, vol. 48, No.2, pp.187-190, Feb. 2012.
[20] X. M. Pan, W. C. Pi, and X.Q. Sheng, “On OpenMP parallelization of the multilevel fast multipole algorithm,” Progress In Electromagnetics Research-PIER, vol. 112, pp. 199-213, 2011.
[21] X. M. Pan, and X. Q. Sheng, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propagat. Mag., vol. 50, pp. 129-138, June 2008.
[22] X. M. Pan, and Xin-Qing Sheng, "General and efficient parallel approach of finite element-boundary integral-multilevel fast multipole algorithm," Journal of Systems Engineering and Electronics, vol. 29, pp. 207-212, April 2008.
[23]
X. M. Pan, and Xin-Qing Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Journal of Electromagnetic Waves and Applications, vol. 20, pp. 1081-1092, Aug. 2006.